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Reference:

• EM: http://cs229.stanford.edu/notes2020spring/cs229-notes8.pdf

• CCP-EM: Arcidiacono and Miller [2011]

1 Standard EM

• objective: maximize the likelihood log p(x; θ)

• with latent variables z, we maximize:

l(θ) = log
∑
z

p(x, z; θ)

• not easy to maximize the log of sums

• instead, easy to maximize the sum of logs

• From Jensen’s inequality:

log p(x; θ) = log
∑
z

Q(z)
p(x, z; θ)

Q(z)
≥
∑
z

Q(z) log
p(x, z; θ)

Q(z)︸ ︷︷ ︸
ELBO(x;Q,θ)

• equality takes place when Q(z) = p(z|x; θ)

• also note, ∑
z

Q(z) log
p(x, z; θ)

Q(z)
=
∑
z

Q(z) log p(x, z; θ)−
∑
z

Q(z) logQ(z)︸ ︷︷ ︸
not a function of θ if Q(z) fixed

• E-step: compute Q(z): the posterior distribution of the latent variable

• M-step: fix Q(z) and view that as a weight (i.e., not a function of θ). Maximize w.r.t. θ the sum of

logs: ∑
z

Q(z) log p(x, z; θ) = Ez|x;θold log p(x, z; θ)︸ ︷︷ ︸
complete data log likelihood
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2 CCP-EM

• individual n, period t, with choice dnt = j ∈ {1, . . . , J}, observable state xnt, unobservable state snt

• likelihood of observing data: action and the observable state

Lt(dnt, xn,t+1|xnt, snt; θ, π, p) =
∏
j

[
ljt(xnt, snt, θ, π, p)fjt(xn,t+1|xnt, snt, θ)

]djnt

• E-step:

– update q
(m)
nst , the conditional probability of latent variable in state s in t

◦ This is exactly p(z|x; θ), but the dynamic nature means that we should compute the posterior

distribution of s in each period

◦ posterior:

p(z|x; θ) =
p(z, x; θ)∑

z p(x|z; θ)p(z; θ)

◦ denominator:

Ln = L(dn, xn|xn1; θ, π, p)

=
∑
s1

· · ·
∑
sT︸ ︷︷ ︸

integrate over z, ST

π(s1|xn1)

(
T∏
t=2

π(st|st−1)

)
︸ ︷︷ ︸

density of z

 T∏
t=1

Lt(dnt, xn,t+1|xnt, st; θ, π, p)︸ ︷︷ ︸
Lnt(st)


︸ ︷︷ ︸

p(x|z;θ)

◦ numerator:

Ln(snt = s)

=
∑

st′ :t
′ 6=t

π(s1|xn1)

 T∏
t′=2,t′ 6=t,t+1

π(st′ |st′−1)

 T∏
t′=1,t′ 6=t,t+1

Lnt′(st′)

π(s|st−1)Lnt(s)π(st+1|s)Ln,t+1(st+1)

◦ If transitions of latent variables are i.i.d., i.e., π(s) = π(s|s′),∀s′, and independent of observ-

able states and actions, then all other period actions and state transitions are irrelevant and

hence canceled out in the ratio. q
(m)
nst could be simplified:

q
(m)
nst =

π(st = s)Lnt(st = s)∑
s′ π(st = s′)Lnt(st = s′)

– update π(m), transition probabilities on latent variables

– update p(m)(x, s), the CCP

◦ note the CCP is on both the observable and latent states

◦ update based on logit choice probability given value functions
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• M-step: maximize∑
n

∑
t

∑
s︸ ︷︷ ︸

T×S

∑
j

q
(m+1)
nst log Lt(dnt, xn,t+1|xnt, snt = s; θ, π(m+1), p(m+1))︸ ︷︷ ︸

likelihood of observing both decision and observable state given latent value

– note, technically Lt is a conditional probability rather than joint, but the probability of having s

is not a function of the structural parameters θ, so it does not affect the maximization
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