Notes on Double Machine Learning (for Applied Research)

Jiding Zhang

1 The Omitted Variable Bias

The true model ("long regression"):

$$
Y=X_{1} \beta_{1}+X_{2} \beta_{2}+u
$$

Consider estimating the following "short regression" model (omitting X_{1}) instead:

$$
Y=X_{2} \beta_{2}+v \quad \text { where we do the projection: } X_{2}=\delta X_{1}+\varepsilon
$$

then $\hat{\beta}_{2}$ is biased if $\delta \neq 0$, i.e., here the result of the "short regression" is not right!

2 The FWL Theorem: The "Correct" Short Regression

Consider the model:

$$
Y=X_{1} \beta_{1}+X_{2} \beta_{2}+u
$$

We define the residual maker matrix M_{X} as (projecting on X and taking the residuals):

$$
M_{X}=I-X\left(X^{\prime} X\right)^{-1} X^{\prime}
$$

and applying the matrix to both sides of the equation gives us:

$$
M_{X_{1}} Y=M_{X_{1}} X_{1} \beta_{1}+M_{X_{1}} X_{2} \beta_{2}+M_{X_{1}} u
$$

which simplifies to the short regression using the residuals:

$$
\begin{aligned}
\underbrace{M_{X_{1}} Y}_{\text {projecting } Y \text { on } X_{1} \text { and taking the residuals }} & =\left(X_{1} \beta_{1}-X_{1} \beta_{1}\right)+M_{X_{1}} X_{2} \beta_{2}+M_{X_{1}} u \\
& =\underbrace{M_{X_{1}} X_{2}}_{\text {projecting } X_{2} \text { on } X_{1} \text { and taking the residuals }} \beta_{2}+M_{X_{1}} u
\end{aligned}
$$

i.e., the modified "short regression" is correct.

Note, if we extend the linear form to allow for the more flexible "taking the residual" approach, we have:

$$
Y-\mathbb{E}\left[Y \mid X_{1}\right]=\beta_{2}\left(X_{2}-\mathbb{E}\left[X_{2} \mid X_{1}\right]\right)+\varepsilon
$$

3 The Partial Linear Case in Chernozhukov et al. [2018]

Consider outcome Y is generated from treatment variable D (exact!) and some high-dimensional confounder X. The goal is to estimate θ_{0} (effect of treatment D). With high-dimensional X (potentially many confounders), we cannot include them all linearly (omitting them: OVB if X correlated with D). We assume confounder X affects outcome variable (and treatment variable) through nuisance functions (for variable selection, can estimate nuisance function through Lasso, see Belloni et al. [2014]).

The model is given by:

$$
Y=D \theta_{0}+g_{0}(X)+U \quad \text { with } \quad \mathbb{E}[U \mid X, D]=0
$$

Note, there is no endogeneity here!
The naive approach: estimate g_{0} from a subsample and obtain \hat{g}_{0}, then do the regression on the plug-in estimator $\hat{g}_{0}\left(X_{i}\right)$:

$$
\hat{\theta}_{0}=\left(\frac{1}{n} \sum D_{i}^{2}\right)^{-1}\left(\frac{1}{n} \sum D_{i}\left(Y_{i}-\hat{g}_{0}\left(X_{i}\right)\right)\right)
$$

This is our OLS estimator $\left(X^{\prime} X\right)^{-1} X^{\prime} y$ but here in y we substract from the estimated nuisance prarmeter.
The convergence of the estimator is given by:

$$
\sqrt{n}\left(\hat{\theta}_{0}-\theta_{0}\right)=\left(\frac{1}{n} \sum D_{i}^{2}\right)^{-1} \frac{1}{\sqrt{n}} \sum D_{i} U_{i}+\left(\frac{1}{n} \sum D_{i}^{2}\right)^{-1} \frac{1}{\sqrt{n}} \sum D_{i}\left(g_{0}\left(X_{i}\right)-\hat{g}_{0}\left(X_{i}\right)\right)
$$

where the second term on the right converges slower than $n^{-\frac{1}{2}}$ (see, e.g., Farrell et al. [2021] for the convergence rate if g_{0} is estimated through neural network).

The problem can be solved by orthogonalization. Now, consider how confounder X affects the treatment variable D. We assume in the true model (recall, D should be correlated with X for the OVB to matter):

$$
D=m_{0}(X)+V \quad \text { with } \quad \mathbb{E}[V \mid X]=0
$$

We partial out the effect of X from D by taking

$$
\hat{V}=D-\hat{m}_{0}(X)
$$

where $\hat{m}_{0}(X)$ is a machine learning estimator of m_{0}. The DML estimator θ_{0} is given by (using the main sample):

$$
\hat{\theta}_{0}=\left(\frac{1}{n} \sum \hat{V}_{i} D_{i}\right)^{-1}\left(\frac{1}{n} \sum \hat{V}_{i}\left(Y_{i}-\hat{g}_{0}\left(X_{i}\right)\right)\right) .
$$

Note, this is an analog of FWL but not exactly the same (e.g., $g_{0} \neq \mathbb{E}(Y \mid X)$ and $Y_{i}-\hat{g}_{0}\left(X_{i}\right)$ is not exactly the residual of Y projected on X). A closer analog is considered in Chernozhukov et al. [2018]:

$$
\hat{\theta}_{0}=\left(\frac{1}{n} \sum \hat{V}_{i} \hat{V}_{i}\right)^{-1}\left(\frac{1}{n} \sum \hat{V}_{i}\left(Y_{i}-\mathbb{E}\left(\widehat{Y_{i} \mid X_{i}}\right)\right)\right)
$$

To estimate \hat{m}_{0} and \hat{g}_{0}, we split the sample and use the auxiliary sample for estimation.

4 Constructing Neyman Orthogonality

4.1 Notations (General Case)

- The score function:

$$
\begin{equation*}
\psi(W ; \theta, \eta) \quad \text { s.t. } \quad \mathbb{E}_{P}\left[\psi\left(W ; \theta_{0}, \eta_{0}\right)\right]=0 \tag{1}
\end{equation*}
$$

- The Gateaux (pathwise) derivative:

$$
D_{r}\left[\eta-\eta_{0}\right]:=\partial_{r}\left\{\mathbb{E}_{P}\left[\psi\left(W ; \theta_{0}, \eta_{0}+r\left(\eta-\eta_{0}\right)\right)\right]\right\}
$$

for all $r \in[0,1)$ and denote

$$
\partial_{\eta} \mathbb{E}_{P} \psi\left(W ; \theta_{0}, \eta_{0}\right)\left[\eta-\eta_{0}\right]:=D_{0}\left[\eta-\eta_{0}\right]
$$

- Neyman orthogonality (score function should be robust to small perturbations in the nuisance function):

$$
\partial_{\eta} \mathbb{E}_{P} \psi\left(W ; \theta_{0}, \eta_{0}\right)\left[\eta-\eta_{0}\right]=0 \quad \forall \eta .
$$

Rough idea on why Neyman orthorgonal score matters (Theorem 3.1): If you estimate the target parameter from a score function that satisfies Neyman orthogonality, you get the correct convergence rate!

In the GMM case:

- moment condition:

$$
\mathbb{E}_{P}\left[m\left(W ; \theta_{0}, h_{0}(Z)\right) \mid R\right]=0
$$

- W : (all) data/observation
- R : conditions in moments (subvector of W)
- Z : nuisance vectors (subvector of R, e.g., high-dim confounders) with true nuisance function h_{0}
- A : arbitrary moment selection function
- Ω : weighting function on moments
- μ : a functional parameter with the true value $\mu_{0}(R)$ is given by:

$$
\mu_{0}(R)=A(R)^{\prime} \Omega(R)^{-1}-G(Z) \Gamma(R)^{\prime} \Omega(R)^{-1}
$$

where

$$
\begin{aligned}
\Gamma(R) & =\left.\partial_{v^{\prime}} \mathbb{E}_{P}\left[m\left(W ; \theta_{0}, v\right) \mid R\right]\right|_{v=h_{0}(Z)} \\
G(Z) & =\mathbb{E}_{P}\left[A(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right] \times\left(\mathbb{E}_{P}\left[\Gamma(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right]\right)^{-1}
\end{aligned}
$$

$\underline{\text { Constructing the Neyman orthogonal score (Lemma 2.6): In this case, the Neyman orthogonal score is: }}$

$$
\psi(W ; \theta, \eta)=\mu(R) m(W ; \theta, h(Z))
$$

4.2 The Partial Linear Case (Corollary of Lemma 2.6)

The partial linear model moment condition is:

$$
\mathbb{E}_{P}\left[Y-D \theta_{0}-g_{0}(X) \mid X, D\right]=0
$$

It's a special case of GMM where we pick: $W=(Y, D, X), R=(D, X), Z=X, h(Z)=g(X), A(R)=-D$, $\Omega(R)=1$, and the moment function is

$$
m(W ; \theta, v)=Y-D \theta-v
$$

So we can derive the score function:

$$
\begin{aligned}
\Gamma(R) & =\left.\partial_{v^{\prime}} \mathbb{E}_{P}\left[m\left(W ; \theta_{0}, v\right) \mid R\right]\right|_{v=h_{0}(Z)}=\left.\partial_{v^{\prime}} \mathbb{E}_{P}[Y-D \theta-v \mid D, X]\right|_{v=g_{0}(X)}=-1 \\
G(Z) & =\mathbb{E}_{P}\left[A(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right] \times\left(\mathbb{E}_{P}\left[\Gamma(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right]\right)^{-1} \\
& =\mathbb{E}_{P}\left[(-D)^{\prime} \times 1 \times(-1) \mid X\right] \times\left(\mathbb{E}_{P}[(-1) \times 1 \times(-1) \mid Z]\right)^{-1}=\mathbb{E}_{P}(D \mid X) \\
\mu(R) & =A(R)^{\prime} \Omega(R)^{-1}-G(Z) \Gamma(R)^{\prime} \Omega(R)^{-1}=(-D) \times 1-\mathbb{E}_{P}(D \mid X) \times(-1) \times 1=-D+\mathbb{E}_{P}(D \mid X)
\end{aligned}
$$

Hence,

$$
\psi(W ; \theta, \eta)=\mu(R) m(W ; \theta, h(Z))=(-D+\underbrace{\mathbb{E}_{P}(D \mid X)}_{m_{0}(X)})\left(Y-D \theta-g_{0}(X)\right) .
$$

Flipping the sign, we have

$$
\left(D-m_{0}(X)\right)\left(Y-D \theta-g_{0}(X)\right)
$$

Note, this looks like the moment condition for IV!
Next, we prove the score function satisfies (A) condition (1); and (B) the Neyman orthogonality condition.
To show (A), we need to show

$$
\begin{aligned}
& \mathbb{E}_{P}\left[\left(D-\mathbb{E}_{P}[D \mid X]\right)\left(Y-D \theta_{0}-g_{0}(X)\right)\right]=0 \\
\Leftrightarrow & \mathbb{E}_{P}\{\left(D-\mathbb{E}_{P}[D \mid X]\right) \underbrace{\mathbb{E}_{P}^{D, X}\left[Y-D \theta_{0}-g_{0}(X) \mid D, X\right]}_{=0}\}=0 .
\end{aligned}
$$

Note we use the law of iterated expectation (similar to the IV case).
To show (B), note that $\eta=(\mu, h)$, i.e., two nuisance functions:

$$
\mathbb{E}_{P}\left[\psi\left(W ; \theta_{0}, \eta_{0}\right)+r\left(\eta-\eta_{0}\right)\right]=\mathbb{E}_{P}\left\{\left[\mu_{0}(R)+r\left(\mu(R)-\mu_{0}(R)\right)\right] m\left(W ; \theta_{0}, h_{0}(Z)+r\left(h(Z)-h_{0}(Z)\right)\right)\right\}
$$

Define

$$
\begin{aligned}
& I_{1}=\mathbb{E}_{P}\left[\left(\mu(R)-\mu_{0}(R)\right) m\left(W, \theta_{0}, h_{0}(Z)\right)\right] \\
& I_{2}=\mathbb{E}_{P}\left[\left.\mu_{0}(R) \partial_{v^{\prime}} m\left(W, \theta_{0}, v\right)\right|_{v=h_{0}(Z)}\left(h(Z)-h_{0}(Z)\right)\right]
\end{aligned}
$$

and

$$
\partial_{\eta} \mathbb{E}_{P} \psi\left(W, \theta_{0}, \eta_{0}\right)\left[\eta-\eta_{0}\right]=I_{1}+I_{2}
$$

where

- I_{1} corresponds to the derivative with respect to μ at $r=0$,
- I_{2} corresponds to the derivative with respect to h at $r=0$.

We note that $I_{1}=0$ due to iterative expectation, and (see p. 55 of the paper for details on the last equality)

$$
\begin{aligned}
I_{2} & =\mathbb{E}_{P}\left[\mu_{0}(R) \mathbb{E}_{P}^{X}\left[\left.\partial_{v^{\prime}} m\left(W, \theta_{0}, v\right)\right|_{v=h_{0}(Z)} \mid X\right]\left(h(Z)-h_{0}(Z)\right)\right] \\
& =\mathbb{E}_{P}\left[\mu_{0}(R) \Gamma(R)\left(h(Z)-h_{0}(Z)\right)\right] \\
& =\mathbb{E}_{P}\left[\mathbb{E}_{P}^{Z}\left[\mu_{0}(R) \Gamma(R) \mid Z\right]\left(h(Z)-h_{0}(Z)\right)\right] \\
& =0
\end{aligned}
$$

5 Other Remarks

5.1 Intuition: The Estimator

How to get the estimator from $\mathbb{E}\left[\left(D-m_{0}(X)\right)\left(Y-D \theta-g_{0}(X)\right)\right]=0$? Consider $\hat{\beta}_{I V}=\left(Z^{\prime} X\right)^{-1} Z^{\prime} y$. Here $Z:=D-m_{0}(X)$, and $y=Y-g_{0}(X)$.

5.2 Endogeneity

Consider the model

$$
\begin{array}{lr}
Y=D \theta_{0}+g_{0}(X)+U, & \mathbb{E}_{P}(U \mid X, Z)=0 \\
Z=m_{0}(X)+V, & \mathbb{E}_{P}(V \mid X)=0
\end{array}
$$

We set: $W=(Y, D, X, Z), R=(X, Z), Z=X, A(R)=-Z, \Omega(R)=1$, and $m\left(W ; \theta_{0}, v\right)=Y-D \theta_{0}-v$.

$$
\begin{aligned}
\Gamma(R) & =\left.\partial_{v^{\prime}} \mathbb{E}_{P}\left[m\left(W ; \theta_{0}, v\right) \mid R\right]\right|_{v=h_{0}(Z)}=\left.\partial_{v^{\prime}} \mathbb{E}_{P}[Y-D \theta-v \mid X, Z, D]\right|_{v=g_{0}(X)}=-1 \\
G(Z) & =\mathbb{E}_{P}\left[A(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right] \times\left(\mathbb{E}_{P}\left[\Gamma(R)^{\prime} \Omega(R)^{-1} \Gamma(R) \mid Z\right]\right)^{-1} \\
& =\mathbb{E}_{P}\left[(-Z)^{\prime} \times 1 \times(-1) \mid X\right] \times\left(\mathbb{E}_{P}[(-1) \times 1 \times(-1) \mid X]\right)^{-1}=\mathbb{E}_{P}(Z \mid X) \\
\mu(R) & =A(R)^{\prime} \Omega(R)^{-1}-G(Z) \Gamma(R)^{\prime} \Omega(R)^{-1}=(-Z) \times 1-\mathbb{E}_{P}(Z \mid X) \times(-1) \times 1=-Z+\mathbb{E}_{P}(Z \mid X)
\end{aligned}
$$

Hence we have the condition:

$$
\mathbb{E}_{P}\left[\left(Z-m_{0}(X)\right)\left(Y-D \theta_{0}-g_{0}(X)\right)\right]=0
$$

References

Alexandre Belloni, Victor Chernozhukov, and Christian Hansen. Inference on treatment effects after selection among high-dimensional controls. Review of Economic Studies, 81(2):608-650, 2014.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21(1):C1-C68, 2018.

Max H Farrell, Tengyuan Liang, and Sanjog Misra. Deep neural networks for estimation and inference. Econometrica, 89(1):181-213, 2021.

