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1 The Omitted Variable Bias

The true model (“long regression”):

Y = X1β1 +X2β2 + u.

Consider estimating the following “short regression” model (omitting X1) instead:

Y = X2β2 + v where we do the projection: X2 = δX1 + ε.

then β̂2 is biased if δ ̸= 0, i.e., here the result of the “short regression” is not right!

2 The FWL Theorem: The “Correct” Short Regression

Consider the model:

Y = X1β1 +X2β2 + u.

We define the residual maker matrix MX as (projecting on X and taking the residuals):

MX = I −X(X ′X)−1X ′

and applying the matrix to both sides of the equation gives us:

MX1
Y =MX1

X1β1 +MX1
X2β2 +MX1

u

which simplifies to the short regression using the residuals:

MX1
Y︸ ︷︷ ︸

projecting Y on X1 and taking the residuals

= (X1β1 −X1β1) +MX1
X2β2 +MX1

u

= MX1X2︸ ︷︷ ︸
projecting X2 on X1 and taking the residuals

β2 +MX1u

i.e., the modified “short regression” is correct.

Note, if we extend the linear form to allow for the more flexible “taking the residual” approach, we have:

Y − E[Y |X1] = β2(X2 − E[X2|X1]) + ε.
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3 The Partial Linear Case in Chernozhukov et al. [2018]

Consider outcome Y is generated from treatment variable D (exact! ) and some high-dimensional confounder

X. The goal is to estimate θ0 (effect of treatment D). With high-dimensional X (potentially many con-

founders), we cannot include them all linearly (omitting them: OVB if X correlated with D). We assume

confounder X affects outcome variable (and treatment variable) through nuisance functions (for variable

selection, can estimate nuisance function through Lasso, see Belloni et al. [2014]).

The model is given by:

Y = Dθ0 + g0(X) + U with E[U |X,D] = 0.

Note, there is no endogeneity here!

The naive approach: estimate g0 from a subsample and obtain ĝ0, then do the regression on the plug-in

estimator ĝ0(Xi):

θ̂0 =

(
1

n

∑
D2

i

)−1 (
1

n

∑
Di(Yi − ĝ0(Xi))

)
.

This is our OLS estimator (X ′X)−1X ′y but here in y we substract from the estimated nuisance prarmeter.

The convergence of the estimator is given by:

√
n(θ̂0 − θ0) =

(
1

n

∑
D2

i

)−1
1√
n

∑
DiUi +

(
1

n

∑
D2

i

)−1
1√
n

∑
Di(g0(Xi)− ĝ0(Xi))

where the second term on the right converges slower than n−
1
2 (see, e.g., Farrell et al. [2021] for the conver-

gence rate if g0 is estimated through neural network).

The problem can be solved by orthogonalization. Now, consider how confounder X affects the treatment

variable D. We assume in the true model (recall, D should be correlated with X for the OVB to matter):

D = m0(X) + V with E[V |X] = 0.

We partial out the effect of X from D by taking

V̂ = D − m̂0(X)

where m̂0(X) is a machine learning estimator of m0. The DML estimator θ0 is given by (using the main

sample):

θ̂0 =

(
1

n

∑
V̂iDi

)−1 (
1

n

∑
V̂i(Yi − ĝ0(Xi))

)
.

Note, this is an analog of FWL but not exactly the same (e.g., g0 ̸= E(Y |X) and Yi − ĝ0(Xi) is not exactly

the residual of Y projected on X). A closer analog is considered in Chernozhukov et al. [2018]:

θ̂0 =

(
1

n

∑
V̂iV̂i

)−1 (
1

n

∑
V̂i(Yi − ̂E(Yi|Xi))

)
.

To estimate m̂0 and ĝ0, we split the sample and use the auxiliary sample for estimation.
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4 Constructing Neyman Orthogonality

4.1 Notations (General Case)

• The score function:

ψ(W ; θ, η) s.t. EP [ψ(W ; θ0, η0)] = 0 (1)

• The Gateaux (pathwise) derivative:

Dr[η − η0] := ∂r {EP [ψ(W ; θ0, η0 + r(η − η0))]}

for all r ∈ [0, 1) and denote

∂ηEPψ(W ; θ0, η0)[η − η0] := D0[η − η0]

• Neyman orthogonality (score function should be robust to small perturbations in the nuisance function):

∂ηEPψ(W ; θ0, η0)[η − η0] = 0 ∀η.

Rough idea on why Neyman orthorgonal score matters (Theorem 3.1): If you estimate the target parameter

from a score function that satisfies Neyman orthogonality, you get the correct convergence rate!

In the GMM case:

• moment condition:

EP [m(W ; θ0, h0(Z))|R] = 0

• W : (all) data/observation

• R: conditions in moments (subvector of W )

• Z: nuisance vectors (subvector of R, e.g., high-dim confounders) with true nuisance function h0

• A: arbitrary moment selection function

• Ω: weighting function on moments

• µ: a functional parameter with the true value µ0(R) is given by:

µ0(R) = A(R)′Ω(R)−1 −G(Z)Γ(R)′Ω(R)−1

where

Γ(R) = ∂v′EP [m(W ; θ0, v)|R]|v=h0(Z)

G(Z) = EP [A(R)
′Ω(R)−1Γ(R)|Z]×

(
EP [Γ(R)

′Ω(R)−1Γ(R)|Z]
)−1

Constructing the Neyman orthogonal score (Lemma 2.6): In this case, the Neyman orthogonal score is:

ψ(W ; θ, η) = µ(R)m(W ; θ, h(Z))
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4.2 The Partial Linear Case (Corollary of Lemma 2.6)

The partial linear model moment condition is:

EP [Y −Dθ0 − g0(X)|X,D] = 0.

It’s a special case of GMM where we pick: W = (Y,D,X), R = (D,X), Z = X,h(Z) = g(X), A(R) = −D,

Ω(R) = 1, and the moment function is

m(W ; θ, v) = Y −Dθ − v.

So we can derive the score function:

Γ(R) = ∂v′EP [m(W ; θ0, v)|R]|v=h0(Z) = ∂v′EP [Y −Dθ − v|D,X]|v=g0(X) = −1

G(Z) = EP [A(R)
′Ω(R)−1Γ(R)|Z]×

(
EP [Γ(R)

′Ω(R)−1Γ(R)|Z]
)−1

= EP [(−D)′ × 1× (−1)|X]× (EP [(−1)× 1× (−1)|Z])−1
= EP (D|X)

µ(R) = A(R)′Ω(R)−1 −G(Z)Γ(R)′Ω(R)−1 = (−D)× 1− EP (D|X)× (−1)× 1 = −D + EP (D|X)

Hence,

ψ(W ; θ, η) = µ(R)m(W ; θ, h(Z)) = (−D + EP (D|X)︸ ︷︷ ︸
m0(X)

)(Y −Dθ − g0(X)).

Flipping the sign, we have

(D −m0(X))(Y −Dθ − g0(X)).

Note, this looks like the moment condition for IV!

Next, we prove the score function satisfies (A) condition (1); and (B) the Neyman orthogonality condition.

To show (A), we need to show

EP [(D − EP [D|X]) (Y −Dθ0 − g0(X))] = 0

⇔EP

{(
D − EP [D|X]

)
ED,X
P

[
Y −Dθ0 − g0(X)|D,X

]
︸ ︷︷ ︸

=0

}
= 0.

Note we use the law of iterated expectation (similar to the IV case).

To show (B), note that η = (µ, h), i.e., two nuisance functions:

EP [ψ(W ; θ0, η0) + r(η − η0)] = EP

{[
µ0(R) + r(µ(R)− µ0(R))

]
m
(
W ; θ0, h0(Z) + r(h(Z)− h0(Z))

)}
.

Define

I1 = EP [(µ(R)− µ0(R))m(W, θ0, h0(Z))] ,

I2 = EP

[
µ0(R)∂v′m(W, θ0, v)|v=h0(Z)(h(Z)− h0(Z))

]
and

∂ηEPψ(W, θ0, η0)[η − η0] = I1 + I2

where
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• I1 corresponds to the derivative with respect to µ at r = 0,

• I2 corresponds to the derivative with respect to h at r = 0.

We note that I1 = 0 due to iterative expectation, and (see p. 55 of the paper for details on the last equality)

I2 = EP

[
µ0(R)EX

P

[
∂v′m(W, θ0, v)|v=h0(Z)|X

]
(h(Z)− h0(Z))

]
= EP [µ0(R)Γ(R)(h(Z)− h0(Z))]

= EP

[
EZ
P [µ0(R)Γ(R)|Z] (h(Z)− h0(Z))

]
= 0.

5 Other Remarks

5.1 Intuition: The Estimator

How to get the estimator from E[(D −m0(X))(Y −Dθ − g0(X))] = 0? Consider β̂IV = (Z ′X)−1Z ′y. Here

Z := D −m0(X), and y = Y − g0(X).

5.2 Endogeneity

Consider the model

Y = Dθ0 + g0(X) + U, EP (U |X,Z) = 0,

Z = m0(X) + V, EP (V |X) = 0.

We set: W = (Y,D,X,Z), R = (X,Z), Z = X, A(R) = −Z, Ω(R) = 1, and m(W ; θ0, v) = Y −Dθ0 − v.

Γ(R) = ∂v′EP [m(W ; θ0, v)|R]|v=h0(Z) = ∂v′EP [Y −Dθ − v|X,Z,D]|v=g0(X) = −1

G(Z) = EP [A(R)
′Ω(R)−1Γ(R)|Z]×

(
EP [Γ(R)

′Ω(R)−1Γ(R)|Z]
)−1

= EP [(−Z)′ × 1× (−1)|X]× (EP [(−1)× 1× (−1)|X])
−1

= EP (Z|X)

µ(R) = A(R)′Ω(R)−1 −G(Z)Γ(R)′Ω(R)−1 = (−Z)× 1− EP (Z|X)× (−1)× 1 = −Z + EP (Z|X)

Hence we have the condition:

EP [(Z −m0(X))(Y −Dθ0 − g0(X))] = 0.
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