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This writeup is based on Pakes’s lecture notes1, Pakes, Porter, Ho, and Ishii (Econometrica, 2015), Cher-

nozhukov’s lecture notes2, Chernozhukov, Hong and Tamer (Econometrica, 2007), and Bugni (Econometrica,

2010).

1 The PPHI Method

1.1 Notes

For linear moment inequalities, the PPHI method obtains the asymptotic distribution of extreme points of

the polyhedron (the set of estimators).

Let j = 1, . . . , J be markets (?), wherein we observe individual choices.

• revealed preference: E [∆r(di, d
′(di), θ)] ≥ 0.

• moments in market j (approximate E):

m(θ) =
1

nj

∑
i

∆rj(dji , d
′(dji ), θ)⊗ h(xji ).

• sample mean across markets:

m(PJ , θ) =
1

J

J∑
j=1

m(θ).

• estimation and inference (focus on the extreme point of one dimension of θ)

Θ̂J = arg min
θ

∥∥∥D̂−1/2
J m(PJ , θ)−

∥∥∥
where D̂J is a diagonal matrix (variance), and is a consistent estimator of the true variance of moments.

D̂J could be obtained by a two-step estimation (first obtain a consistent estimator of θ by doing

Minimum Distance without weighing, and evaluate the sample variance of moments at the consistent

estimator).

1https://canvas.harvard.edu/courses/5808/files/1424891
2https://ocw.mit.edu/courses/economics/14-385-nonlinear-econometric-analysis-fall-2007/

lecture-notes/lecture12.pdf
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• asymptotic distribution for the estimator of boundary (say θ̂1):
√
J(θ̂1 − θ1)

d−→ τ̂1, where

τ̂1 = min
{
τ1 : D0(θ)−1/2Γ0(θ)τ + Z0 ≥ 0

}
.

Here superscript 0 denotes the binding moments Pm(θ) = 0. Z0 ∼ N(0,Ω0(θ)), where Ω0(θ) is the

correlation matrix of moments, and Γ0(θ) is the Jacobian matrix. Both could be estimated consistently

by evaluating at a consistent estimator θ̂. Only the binding moments matter here. The difficulty is we

do not know which population moments are binding.

• Procedures (obtaining a point): Get consistent estimators Γ̂J and Ω̂J . Take Z∗ ∼ N(0, Ω̂J). Consider

inequalities:

0 ≤ D̂−1/2Γ̂τ + Z∗ + rJ

(
D̂−1/2m(PJ , θ̂)

)
+

where rJ = o(
√
J/
√

2 ln ln J). If we find the solution, then we minimize τ1. If not, eliminate moments

in the order of D̂
−1/2
J mj(PJ , θ̂) starting from the largest value, until a solution exists. Solve the

stochastic LP with the remaining moments (indices denoted by s):

τ∗1 = min

{
τ1 : 0 ≤ D̂−1/2

s Γ̂sτ + Z∗s + rJ

(
D̂−1/2
s ms(PJ , θ̂)

)
+

}
.

Comment: I suspect the convergence rate (
√
J in the paper and notes) should be

√∑J
i=1 nj . The

definition of “market” is not clear

1.2 Comments on Ho and Pakes (AER, 2014)

Ho and Pakes (AER, 2014) uses the PPHI method to construct the confidence interval for the parameter

(scalar).

• In ineq setup.m, the moments are not weighed by number of switches.

• In ineq run.m, varterm3 and Sigma3 (vcov of moments) are not defined in any files.

• They state that they calculate the vcov (Sigma3), before knowing the parameter. It should be a

function of the parameter value.

• Technically we can follow the steps and estimate θ consistently, then estimatate vcov, and follow the

steps to take draws, evaluate upper bounds and lower bounds, drop moments (if UB < LB) to get a

distribution. Since this problem is linear, Jacobian matrix is equal to ∆p−∆p′.

• For the sequence o(
√
J/
√

2 ln ln J), they use
√
Jtot/

√
2 ln ln Jtot where Jtot is the sum (over (h, z)) of

the number of patients who can switch to hospital h with instrument z.

• They use Jtot for each component of the moment to obtain the standard error. This is not consistent

with the PPHI paper.
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2 The CHT Method

2.1 Notes

The CHT method obtains confidence regions for the identified set and the true parameter.

• identified set: ΘI = {θ : EP [mi(θ)] ≤ 0}.

• criterion function:

Q(θ) ,
∥∥∥(Ep[mi(θ)])

′
W 1/2(θ)

∥∥∥2

+
.

• empirical analog:

Qn(θ) ,

∥∥∥∥∥
(

1

n

n∑
i=1

mi(θ)

)′
W 1/2
n (θ)

∥∥∥∥∥
2

+

.

• estimation:

Θ̂I = Cn(c̃) = {θ : nQn(θ) ≤ c̃},

where c̃ ≥ Cn with probability approaching 1 but c̃/n
p−→ 0. c̃ could take the value of lnn. The rate of

convergence is approximately 1/
√
n. Sometimes we can pick c̃ = 0 (Condition C.3 in CHT).

• confidence region:

CR = {θ : nQn(θ) ≤ ĉ}

where ĉ is the α-th quantile of

Cn = sup
θ∈ΘI

nQn(θ).

• obtaining ĉ from simulation (Theorem 4.2 in CHT): Suppose moment functions has the Donsker prop-

erty:
√
n (En[mi(θ)]− P[mi(θ)])

d−→ ∆(θ)

where ∆(θ) is a mean zero Gaussian process. Define

C(θ) ,
∥∥∥(∆(θ) + ξ(θ))′W 1/2(θ)

∥∥∥2

+

where the j-th component of ξ(θ) is −∞ if the j-th population moment is not binding (EP [mij(θ)] < 0)

and 0 otherwise (EP [mij(θ)] = 0). Then,

Cn
d−→ C , sup

θ∈ΘI

C(θ).

• bootstrapping to obtain the distribution of ĉ:

1. Take a draw of z∗i : a n-vector of i.i.d. N(0, 1) variables.
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2. For constants {cj}Jj=1, calculate C∗n:

C∗n = sup
θ∈Θ̂I

∥∥∥(∆∗n(θ) + ξ̂(θ))′W 1/2
n (θ)

∥∥∥2

+
,

where:

ξ̂j(θ) =

−∞ En[mij(θ)] ≤ −cj
√

log n/n,

0 otherwise,

and

∆∗n(θ) = n−1/2
n∑
i=1

[mi(θ)z
∗
i ].

3. Repeat steps 1 – 2 to obtain a distribution of C∗n.

4. Take the α-th quantile of C∗n.

2.2 Comments

• Set estimator: For the simple case, let W (θ) be a constant matrix. The criterion function could be

expressed as

Q(θ) = ‖(Aθ)+‖2 .

for some matrix A. Note, ‖(Aθ)+‖ a convex function (the 2-norm of (Aθ)+, see page 87 of Boyd and

Vandenberghe (2004)). Since the norm is non-negative, by definition Q(θ) is convex. The set estimator

is a sublevel set of Q(θ), hence it is a convex set.

• Computationally this method might be hard, because the objective is a non-smooth convex function.

• Conditon C.3 specifies the degenerate condition. Consider the simple case: moments are linear, i.e.,

EP [Aθ] ≤ 0. If we could find Θn for any n, such that for any θ ∈ Θn, En[Aθ] = 0, then {θ : En[Aθ] = 0}

is consistent at the 1/
√
n rate.

3 The Bugni Method

3.1 Notes

The Bugni method obtains confidence regions for the identified set.

• identified set:

ΘI =

{
θ ∈ Θ :

{
E[mj(Z, θ)] ≤ 0

}J
j=1

}
.

• criterion function:

Q(θ) = G

({[
E[mj(Z, θ)]

]
+

}J
j=1

)
where G(x) =

∑J
j=1 wjxj or G(x) = max{wjxj} for arbitrary positive constants {wj}Jj=1 (G is the

weighting function).
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• set estimator:

Θ̂I(τn) =

{
θ ∈ Θ :

{
Enmj(Z, θ) ≤ τn/

√
n
}J
j=1

}
where τn/

√
n = o(1) and

√
ln lnn/τn = o(1).

• bootstrap:

1. calculate for s times for bootstrap samples of size n with replacement from the data:

Γ∗n =


supθ∈Θ̂I(τn)G

({
√
n
[
E∗n[mj(Z, θ)]− En[mj(Z, θ)]

]
+
× I
(
|En[mj(Z, θ)]| ≤ τn/

√
n
)}J

j=1

)
Θ̂I(τn) 6= ∅

0 o.w.

where E∗n is the sample mean in the bootstrap samples.

2. Let ĉBn (1− α) be the (1− α) quantile of the distribution of Γ∗n. Then the (1− α) confidence set is

ĈBn (1− α) =

{
θ ∈ Θ : G

({√
nEn[mj(Z, θ)]+

}J
j=1

)
≤ ĉBn (1− α)

}
.

• parameters to tune: wj , τn.

• The bootstrap might require recalculating moment states, if some of the moment states are obtained

from a first-step estimation from data.

• In practice we can pick τn =
√

lnn.

3.2 Linear Moment Inequalities

• Let On×K be the matrix of observations of moment states, where n is the number of observations,

and K is the dimension of θ. Let Vn×J be the matrix of IVs, where J is the number of IVs for each

observation.

Enm(Z, θ) =
1

n

n∑
i=1

mi(Zi, θ) =
1

n
V ′Oθ.

• set estimator:

Θ̂I(τn) =

{
θ ∈ Θ :

1

n
V ′Oθ ≤ τn√

n
1

}
where 1 is a vector of all ones. Note that it is a polyhedron.

• To obtain a bounding box of the set, we solve linear programs: maxθ∈ΘI
{θj} and minθ∈ΘI

{θj} for each

j.

3.2.1 G(x) = max{wjxj}

We assume the weighting function takes the form of G(x) = max{wjxj}.
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• Let V ∗, O∗ be the bootstrapped IV matrix and matrix of moment states, respectively. Also let w be

the vector of weights of each moment. We rewrite the objective function in the optimization. Noting

that θ ∈ Θ̂I(τn) guarantees that
1

n
V ′Oθ ≤ τn√

n
1,

we have

sup
θ∈Θ̂I(τn)

G

({√
n
[
E∗n[mj(Z, θ)]− En[mj(Z, θ)]

]
+
× I
(
|En[mj(Z, θ)]| ≤ τn/

√
n
)}J

j=1

)

= sup
θ∈Θ̂I(τn)

max
j=1,...,J

{
wj max

{√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ, 0

}
× I

((
1

n
V ′O

)
j

θ ≥ − τn√
n

)}
.

• This problem could be solved by solving J LPs: For each j, solve:

max
θ

wj

√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ

subject to

(
1

n
V ′O

)
j

θ +
τn√
n
≥ 0

θ ∈ Θ̂I(τn)

and compare the (non-negative) optimal values. If the first constraint is not satisfied, in the original

problem

wj max

{√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ, 0

}
× I

((
1

n
V ′O

)
j

θ ≥ − τn√
n

)
= 0.

So here we force the constraint to be satisfied. If the optimal value is negative with the first constraint

satisfied, we simply set it to be 0.

We also note that the optimization problem has to be bounded as long as the feasible set is bounded

(otherwise it violates the Weierstrass Theorem). The boundedness of the feasible set is guaranteed if

Θ̂I(τn) is bounded.

• confidence set:

ĈBn (1− α) =

{
θ ∈ Θ : max

j=1,...,J

{
wj

[
√
n

(
1

n
V ′O

)
j

θ

]
+

}
≤ ĉBn (1− α)

}

=

{
θ ∈ Θ : wj

√
n

(
1

n
V ′O

)
j

θ ≤ ĉBn (1− α),∀j

}

Note, the confidence set is a set defined by linear constraints. So it is easy to obtain a bounding box

by solving LPs.

3.2.2 G(x) =
∑
j wjxj

Now we assume the weighting function is linear additive. Let w be the vector of weights.
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• Similarly, we rewrite the expression of Γ∗n. Let ◦ be the Hadamard product (pointwise product).

Γ∗n =


supθ∈Θ̂I(τn) w

′
[√

n
n

[(
(V ∗)′O∗ − V ′O

)
θ
]

+
◦ I
(

1
nV
′Oθ ≥ − τn√

n
1
)]

Θ̂I(τn) 6= ∅

0 o.w.

• The objective function is the sum of J components. We try to reformulate this problem as MILP.

Step 1: Getting rid of the indicator function.

Consider component j, which could be expressed as

wj max

{√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ, 0

}
× I

((
1

n
V ′O

)
j

θ ≥ − τn√
n

)

= wj max

{
0,

√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj

}
where M is a large constant, and yj is a binary variable:

yj =

0
(

1
nV
′O
)
j
θ ≥ − τn√

n

1 o.w.

We construct the following constraints:(
1

n
V ′O

)
j

θ +
τn√
n
−M(1− yj) < 0, (1)(

1

n
V ′O

)
j

θ +
τn√
n

+Myj ≥ 0. (2)

If
(

1
nV
′O
)
j
θ + τn√

n
≥ 0, yj is forced to be 0 by constraint (1). If

(
1
nV
′O
)
j
θ + τn√

n
< 0, yj is forced to

be 1 by constraint (2).

Step 2: Getting rid of max{0, ·}.

Note,

max wj max

{
0,

√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj

}
⇔ max wjvj

[√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj

]
where vj is a binary variable.

Now let’s construct a new variable zj , such that

zj =


√
n
n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj vj = 1

0 vj = 0

We again construct constraints, where L is a large constant:

zj ≤
√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj + (1− vj)L, (3)

zj ≤ vjL. (4)
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If vj = 1, zj can be as large as
√
n
n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj according to constraint (3). If vj = 0,

zj can be as large as 0 by constraint (4).

Finally, we reformulate the optimization problem:

max
θ,y,v,z

J∑
j=1

wjzj

subject to

(
1

n
V ′O

)
j

θ +
τn√
n
−M(1− yj) < 0 for j = 1, . . . , J(

1

n
V ′O

)
j

θ +
τn√
n

+Myj ≥ 0 for j = 1, . . . , J

zj ≤
√
n

n

(
(V ∗)′O∗ − V ′O

)
j
θ −Myj + (1− vj)L for j = 1, . . . , J

zj ≤ vjL for j = 1, . . . , J

y1, . . . yJ , vi, . . . vJ ∈ {0, 1}

θ ∈ Θ̂I(τn)

• confidence set:

ĈBn (1− α) =

{
θ ∈ Θ : G

({√
nEn[mj(Z, θ)]+

}J
j=1

)
≤ ĉBn (1− α)

}

=

{
θ ∈ Θ : w′

(√
n

n

[(
(V ∗)′O∗ − V ′O

)
θ
]

+

)
≤ ĉBn (1− α)

}

The confidence set is convex.

To obtain a bounding box, we reformulate the constraint set.

Each component in the inequality takes the form of wj max{Ajθ, 0}. We have the following:

max{Ajθ, 0} = yj ⇔ max{Ajθ, 0} ≤ yj ,max{Ajθ, 0} ≥ yj .

Also note,

max{Ajθ, 0} ≤ yj ⇔

Ajθ ≤ yj0 ≤ yj

max{Ajθ, 0} ≥ yj ⇔



Ajθ ≤Mzj

0 ≤ Ajθ +M(1− zj)

Ajθ +M(1− zj) ≥ yj

Mzj ≥ yj

zj ∈ {0, 1}

Thus we can find the bounding box by solving MILPs.
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