Notes on MCMC

Jiding Zhang

1 MCMC

- goal of MCMC: sample from the target distribution $p(x) \propto f(x)$
- rejection sampling: for the target distribution $p(x) \propto f(x)$, sample from Mg(x) where $f(x) \leq Mg(x)$ and $u \sim U[0, 1]$, accept if f(x)/Mg(x) > u.
- the problem: at x_0 where $f(x_0)/Mg(x_0)$ is high, it is likely that in the neighborhood of x_0 the density of p(x) is high too, but the rejection sampling does not use this information
- high-level idea of MCMC: the next draw depends on the last, and the stationary distribution of the Markov Chain is the target distribution p(x)
- Metropolis-Hasting:
 - sample from the easier $g(x_{t+1}|x_t)$ (the proposal distribution, e.g., $g(x_{t+1}|x_t) = N(x_t, \sigma^2)$)
 - detailed balance in the steady state

$$\begin{split} f(a)g(b|a)A(a \to b) &= f(b)g(a|b)A(b \to a) \\ \Rightarrow & \frac{A(a \to b)}{A(b \to a)} = \frac{f(b)}{f(a)}\frac{g(a|b)}{g(b|a)} \end{split}$$

- acceptance probability $A(a \rightarrow b) = \min\{1, \frac{f(b)}{f(a)} \frac{g(a|b)}{g(b|a)}\}$
- if $g(x_{t+1}|x_t)$ is symmetric, we have g(a|b) = g(b|a), so the acceptance probability is min $\{1, p(b)/p(a)\}$, i.e., if p(b) > p(a), move from a to b w.p. 1.
- Gibbs Sampling:
 - sample from a multi-variate distribution p(x, y) where sampling from p(x|y) and p(y|x) is easy
 - sample from the conditional distributions and alternate